The smallest triangle-free 4-chromatic 4-regular graph

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Still another triangle-free infinite-chromatic graph

We give a new example of a triangle-free cc-chromatic graph: the vertices of G form a oox oo matrix, V(G) = [vi,i], i, j = 1, 2, ... The vertex vi,i is connected with every vertex of the ( i + j)th column. G is triangle-free: if A has the smallest column-index among {A, B, C}c V(G) and AB, ACEE(G), then B, Care in the same column so BC¢E(G). G is infinite-chromatic: ~ ~ {1, 2, ... } denotes the...

متن کامل

Decomposing 4-Regular Graphs into Triangle-Free 2-Factors

There is a polynomial algorithm which finds a decomposition of any given 4-regular graph into two triangle-free 2-factors or shows that such a decomposition does not exist.

متن کامل

3-bounded Property in a Triangle-free Distance-regular Graph

Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and D ≥ 3. Assume the intersection numbers a1 = 0 and a2 6= 0. We show Γ is 3-bounded in the sense of the article [D-bounded distance-regular graphs, European Journal of Combinatorics(1997)18, 211-229].

متن کامل

The minimum number of 4-cliques in a graph with triangle-free complement

Let f (n; 4; 3) be minimum number of 4 cliques in a graph of order n with independence number 2: We show that f (n; 4; 3) 1 200 n +O n : We also show if a graph of order n has independence number 2 and is close to regular then it has at least 1 200 n + o n 4-cliques. 1 Notation and conventions Our notation and terminology are standard (see, e.g. [1]). In particular, all graphs are assumed to be...

متن کامل

Triangle-free distance-regular graphs

Let Γ = (X, R) denote a distance-regular graph with distance function ∂ and diameter d ≥ 3. For 2 ≤ i ≤ d, by a parallelogram of length i, we mean a 4-tuple xyzu of vertices in X such that ∂(x, y) = ∂(z, u) = 1, ∂(x, u) = i, and ∂(x, z) = ∂(y, z) = ∂(y, u) = i − 1. Suppose the intersection number a1 = 0, a2 6= 0 in Γ. We prove the following (i)-(ii) are equivalent. (i) Γ is Q-polynomial and con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory

سال: 1970

ISSN: 0021-9800

DOI: 10.1016/s0021-9800(70)80057-6